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Introduction
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The process of ion implantation is crucial in producing semiconductor - Features related to — —
devices. To promote researches and developments or minimize projectiles and targets | :
prototyping costs, accurate simulations of implanted ion distribution is are indispensable for :
necessary. accurate prediction. o )

One widely used Monte Carlo simulation, such as SRIM, utilizes . This model can predict £ | o |
stopping power data from various experiments to calculate the R tel SRIM | Ga —5iC | Ausic
distribution of implanted ions through processes such as ion scattering dS dCCUdLEly dS
and energy loss. fOI‘ any compounds e

without the stopping YT prdition
However, there is a problem with the implanted ion range of the power data. P R
compound targets due to insufficient stopping power data. This issue e

leads to inconsistent experimental results in certain situations.
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Purpose 2
In this work, we used machine learning to create a model :1
even when the stopping power is unknown.
We also identified —— N . oA
the key features necessary for accurate range prediction. L T S

This model can determine the importance of each features,
but the importance of the combination is unknown.
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[1,2] and [3,4,5,6] is necessary

Accuracy increase with dimensions.
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